• 科技小论文
  • 数学建模论文
  • 数学论文
  • 节能减排论文
  • 数学小论文
  • 低碳生活论文
  • 物理论文
  • 建筑工程论文
  • 网站设计论文
  • 农业论文
  • 图书情报
  • 环境保护论文
  • 计算机论文
  • 化学论文
  • 机电一体化论文
  • 生物论文
  • 网络安全论文
  • 机械论文
  • 水利论文
  • 地质论文
  • 交通论文
  • 龙8国际_龙8娱乐_龙8国际娱乐平台

    时间:2016-10-28来源:龙8国际_龙8娱乐_龙8国际娱乐平台 本文已影响
    相关热词搜索:建模 优秀论文 数学 pdf 数学建模优秀论文范文 数学建模国赛优秀论文 大学数学建模pdf下载 篇一:2014年数学建模国家一等奖优秀论文 承 诺 书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容 请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月 15日 赛区评阅编号(由赛区组委会评阅前进行编号): 编 号 专 用 页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):创意平板折叠桌 摘要 目前住宅空间的紧张导致越来越多的折叠家具的出现。某公司设计制作了一款折叠桌以满足市场需要。以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。 针对问题一,根据木板尺寸、木条宽度,首先确定木条根数为19根,接着,根据桌子是前后左右对称的结构,我们只以桌子的四分之一为研究对象,运用空间几何的相关知识关系,推导并建立了几何模型。接着用MATLAB软件编程,绘制出折叠桌动态变化过程图。然后求出折叠桌各木条相对桌面的角度、各木条长度、各木条的开槽长度等数据,相关结果见表1。然后建立相应的三维坐标系,求出桌角各端点坐标,绘出桌角边缘线曲线图,并用MATLAB工具箱作拟合,求出桌角边缘线的函数关系式,并对拟合效果做分析(见表3)。 针对问题二,在折叠桌高度、桌面直径已知情况下,综合考虑桌子稳固性、加工方便、用材最少三个方面因素,我们运用材料力学等相关知识,对折叠桌作受力分析,确定稳固性、加工方便、用材最少三个方面因素间的相互制约关系,建立非线性优化模型。用lingo软件编程,求出对于高70 cm,桌面直径80 cm的折叠桌,平板尺寸172.24cm×80cm×3cm、钢筋位置在桌腿上距离铰链46.13cm处、各木条的开槽长度(见表3)、最长木条(桌脚)与水平面夹角71.934°。 针对问题三,对任意给出的桌面边缘线(f(x)),不妨假定曲线是对称的(否则,桌子的稳定性难以保证),将对称轴上n等份,依照等份点沿着木板较长方向平行的方向下料,则这些点即是铰接处到木板中垂线(相对于木板长方向)的距离。然后修改问题二建立的优化模型,用lingo软件编程,得到最优设计加工参数(平板尺寸、钢筋位置、开槽长度等)。最后,我们根据所建立的模型,设计了一个桌面边缘线为椭圆的折叠桌,并且给出了8个动态变化过程图(见图10)和其具体设计加工参数(见表5)。 最后,对所建立的模型和求解方法的优缺点给出了客观的评价,并指出了改进的方法。 关键字:折叠桌 曲线拟合非线性优化模型 受力分析一、 问题重述 1.1引言 创意平板折叠桌注重于表达木制品的优雅和设计师所想要强调的自动化与功能性。为了增大有效使用面积。设计师以长方形木板的宽为直径截取了一个圆形作为桌面,又将木板剩余的面积切割成了若干个长短不一的木条,每根木条的长度为平板宽到圆上一点的距离,分别用两根钢筋贯穿两侧的木条,使用者只需提起木板的两侧,便可以在重力的作用下达到自动升起的效果,相互对称的木条宛如下垂的桌布,精密的制作工艺配以质朴的木材,让这件工艺品看起来就像是工业革命时期的机器。 1.2问题的提出 围绕创意平板折叠桌的动态变化过程、设计加工参数,本文依次提出如下问题: (1)给定长方形平板尺寸(120 cm × 50 cm × 3 cm),每根木条宽度(2.5 cm),连接桌腿木条的钢筋的位置,折叠后桌子的高度(53 cm)。要求建立模型描述此折叠桌的动态变化过程,并在此基础上给出此折叠桌的设计加工参数和桌脚边缘线的数学描述。 (2)折叠桌的设计应做到产品稳固性好、加工方便、用材最少。对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。 (3)给出软件设计的数学模型,可以根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状,并根据所建立的模型给出几个设计的创意平板折叠桌。要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。 一、 模型假设 (1)忽略实际加工误差对设计的影响; (2)木条与圆桌面之间的交接处缝隙较小,可忽略; (3)钢筋强度足够大,不弯曲; (4)假设地面平整。三、符号说明 符号 意义 D ??? L W N T ???? ???? H R R ???? ???? ???? ???? ?????????????????? 木条宽度(cm) 缝宽 木板长度(cm) 木板宽度(cm) 第n根木条 木条根数 木板从外起第1个木条的长度(cm) 木板从外起第n个木条的长度(cm) 桌子高度(cm) 桌子半径(cm) 桌子直径(cm) 桌子厚度(cm) 第n根木条到木板边沿的距离(cm) 第n根木条顶点位置到圆面轴线径向距离(cm) 第n根木条与水平面的夹角(度) 第n根木条开槽长度(cm) 四、问题分析 4.1问题一分析 题目要求建立模型描述折叠桌的动态变化图,由于在折叠时用力大小的不同,我们不能描述在某一时刻折叠桌的具体形态,但我们可以用每根木条的角度变化来描述折叠桌的动态变化。首先,我们知道折叠桌前后左右对称,我们可以运用几何知识求出四分之一木条的角度变化。最后,根据初始时刻和最终形态两种状态求出桌腿木条开龙8国际_龙8娱乐_龙8国际娱乐平台槽的长度。篇二:数学建模优秀论文模板(全国一等奖模板) Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆??※ 等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式 题注样式在样式表中设置 居中 五号字体 Excel中画出的折线表 字体 采用默认格式 宋体正文 10号 图标题 在图上方 段落间距前0.25行 后0行 表标题 在表下方 段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式 在Excel中复制后,粘贴 ,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写 比如Excel 所有公式和字母均使用MathType编写 公式编号采用MathType编号 格式自己定义 农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜4.1?时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为2.3878?10?4,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少243L。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度?和横向偏转角度?)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB编程进行两次积分求得仅纵向变位时油量与油位、倾斜角?的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h与仅纵向变位时的油位h0建立关系表达式h?1.5?(1.5?h0)cos?,从而得到双向变位油量与油位、倾斜角?、偏转角?的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角?、偏转角?的值,用matlab软件求出??3.30、??40 α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB;误差分目 录 1 背景知识 ........................................... 错误!未定义书签。 1.1 相关数据 .................................................................................... 错误!未定义书签。 1.2 相关数据 ...................................................................................................................... 1 1.3 问题概括 ...................................................................................................................... 1 2 问题分析 ............................................................ 4 3 模型假设 ............................................................ 4 4 名词解释和符号说明 .................................................. 5 4.1 名词解释 ...................................................................................................................... 5 4.2 符号说明 ...................................................................................................................... 5 5 模型建立与求解 ...................................................... 6 数据预处理 ......................................................................................................................... 6 5.1 问题一的分析与求解 .................................................................................................. 9 5.1.1 问题分析 ............................................................................................................... 9 5.1.2 模型Ⅰ0-1线性规划模型 ..................................................................................... 9 5.1.3 模型求解 ............................................................................................................... 9 5.2 问题二的分析与求解 .................................................................................................. 9 5.2.1 问题分析 ............................................................................................................... 9 5.2.2 模型Ⅱ客户满意度最优模型 ............................................................................... 9 5.2.3 模型求解 ............................................................................................................. 10 5.3 问题三的分析与求解 ................................................................................................ 10 5.3.1 问题分析 ............................................................................................................. 10 5.3.2 模型Ⅲ 价格波动模型 ....................................................................................... 10 5.3.3 模型求解 ............................................................................................................. 10 6 误差分析 ........................................................... 11 6.1 误差分析 .................................................................................................................... 11 6.1.1 问题一的误差分析 ............................................................................................. 11 6.1.2 问题二的误差分析 ............................................................................................. 11 6.2 灵敏度分析 ................................................................................................................ 11 6.2.1 问题三的误差分析 ............................................................................................. 11 6.2.2 问题四的误差分析 ............................................................................................. 11 7 模型评价与推广 ..................................................... 12 7.1 模型优点 .................................................................................................................... 12 7.2 模型缺点 .................................................................................................................... 12 7.3 模型推广 .................................................................................................................... 12 参考文献 ............................................................. 13 附录 ................................................................. 14 附录1 ................................................................................................................................ 14 附录2 ................................................................................................................................ 14 附录3 ................................................................................................................................ 14附录4 ................................................................................................................................ 14 Equation Chapter (Next) Section 1篇三:数学建模优秀论文模板(经典中的经典).pdf 本  篇:《龙8国际_龙8娱乐_龙8国际娱乐平台》来源于:龙8国际_龙8娱乐_龙8国际娱乐平台 优秀范文,论文网站
    本篇网址:http://www.xielw.cn/2016/shuxuejianmolunwen_1028/149070.html
    Copyright © 龙8国际_龙8娱乐_龙8国际娱乐平台 All Rights Reserved.
    龙8国际