• 科技小论文
  • 数学建模论文
  • 数学论文
  • 节能减排论文
  • 数学小论文
  • 低碳生活论文
  • 物理论文
  • 建筑工程论文
  • 网站设计论文
  • 农业论文
  • 图书情报
  • 环境保护论文
  • 计算机论文
  • 化学论文
  • 机电一体化论文
  • 生物论文
  • 网络安全论文
  • 机械论文
  • 水利论文
  • 地质论文
  • 交通论文
  • 龙8国际_龙8娱乐_龙8国际娱乐平台

    时间:2016-10-28来源:龙8国际_龙8娱乐_龙8国际娱乐平台 本文已影响
    相关热词搜索:上册 数学 小论文 五年级数学小论文大全 数学论文怎么写 初二上册数学论文题目 篇一:文档八年级上册数学论文 现在,我们都习以为常地使用根号,并感到它使用起来既简明又方便。那么,根号是怎样产生和演变成现在这种样子的呢? 古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。 与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。 直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今龙8国际_龙8娱乐_龙8国际娱乐平台用的根号“ ”。在一本书中,笛卡尔写道:“如果想求某数的平方根,就写作 ,如果想求某数的立方根,则写作 。” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。 现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3^√的使用,比如25的立方根用“3^√”表示。以后,诸如“3^√”等等形式的根号渐渐使用开来。 由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也不是从天上掉下来的。 平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√x),其中属于非负实数的平方根称算术平方根。(正数a的正的平方根,叫做a的算术平方根。)有时我们说的平方根指算术平方根。一个正数如果有平方根,那么必定有两个,它们互为相反数。如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。正数a的平方根可以记作“±√a”,a称为被开方数。正整数的平方根通常是无理数。 负数有平方根吗?其实,没有一个数的平方根是小于零的,所以负数没有平方根(没有意义)。 如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。立方根,类似于平方根的表示方法,读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0) 求一个数a的立方根的运算叫做开立方。 所有实数都有且只有一个立方根。 正数的立方根是正数,负数的立方根是负数,0的立方根是0。 在现实生活中,我们可以通过平方(立方)运算来寻求平方根(立方根),并可以用来验证开平方(开立方)的正确性。篇二:八年级上数学小论文 好题分享 在数学的海洋里,有许多种题型,每一种题型都含有不同的知识点,它们有效地帮助我们复习,更利于我们的提高。 例如这一题:1、如图,AB=AE,∠B=∠E,BC=DE,点F是CD的中点。 (1)求证:AF⊥CD。 (2)在你边结BE后,还有得出什么新的结论,请写出三个(不要求证明)。 证明:连接AC、AD. 在△ABC与△AED中,AB=AE ∠B=∠E BC=DE ∴△ABC≌△AED.(SAS) ∴AC=AD. ∵点F是CD的中点, ∴AF⊥CD; (2)①AF垂直平分BE;②CD∥BE;③四边形BCDE是等腰梯形. 这一题有效地帮助我们复习了几何体,提高了我们对几何的认识。这是一道经典例题,这道题也许会难道很多人。但这道题并不很难,它的思路是这样的: 可以先画辅助线,利用全等,得出垂直。 易错点:有些人会忘记画辅助线。这会导致这道题做不出来。 知识点:帮助我们复习了全等的知识点。 像这种题还有很多,例如: 2·已知如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF是什么三角形,并证明你的结论。 解:△MEF是等腰直角三角形. 证明如下: 连接AM, ∵M是BC的中点,∠BAC=90°,AB=AC, ∴AM= BC=BM,AM平分∠BAC. ∵∠MAC=∠MAB= ∠BAC=45°. ∵AB⊥AC,DE⊥AC,DF⊥AB, ∴DE∥AB,DF∥AC. ∵∠BAC=90°, ∴四边形DFAE为矩形.∴△AEM≌△BFM. ∴DF=AE. ∴EM=FM,∠AME=∠BMF. ∵DF⊥BF,∠B=45°.∵∠AMF+∠BMF=90°, ∴∠BDF=∠B=45°. ∴∠AME+∠AMF=∠EMF=90°, ∴BF=FD. ∴△MEF是等腰直角三角形. ∴AE=BF. 思路:这涉及到计算,可以用换算的方法。画一条辅助线,可以更好地明白和理解这道题。 易错点:会计算错,要会换算。 知识点:复习了平行,等腰三角形 这些有助于我们的学习与进步,要认真做 对于几何体,想到辅助线就很简单,没有想到就是想破头也想不出来.几何体也有技巧,比如看到中点就要想到倍长中线,构造全等三角形。看到一条线段+另一条线段=一条更长的线段,就要想到截长补短,而且截长或补短后一般都要有全等三角形。由这两个例子我们也可以知道其实几何体也不难,题海可以训练出我们对几何题的感觉,可以看到一道题就知道应该按什么思路去解答篇三:初二数学小论文 一、 如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 二、 公路隧道截面形状的研究 十一期间的1个晚上,我从温州回永强的路上,路过一个隧道(白楼下的茅竹隧道),当车在隧道中飞驰而过时,我发现公路隧道截面的形状是拱圈下面一个矩形,而且我见到的公路隧道截面的形状几乎都是这种形状。为什么公路隧道截面的形状不是别的形状呢?于是我决定用数学知识去计算研究公路隧道截面的形状与有效通车面积、截面的周长(与制造材料的成本直接相关)的关系,尝试着能否发现一种更合理、更节省的隧道截面的形状。 一、不同的公路隧道截面形状的设计 为了方便计算,我设定有效通车面积统一为4米×4米,隧道截面最高处为6米。 图形①半圆加正方形 图形②三角形加正方形图形③梯形加正方形 图形④正方形加矩形 图形⑤正方形 二、计算不同形状的隧道截面总面积、截面的周长、隧道的实用面积率 隧道的实用面积率=有效通车面积/ 隧道截面总面积=16 m2/ 隧道截面总面积 第一个图形:(半圆加正方形)隧道截面总面积=有效通车面积+半圆的面积=16m2 +6.28 m2 =22.28m2 这个图形的隧道的实用面积率=16 m2/ 22.28m2 ≈71.8% 这个图形的隧道截面的周长=3×4m+пR=12m+6.28m=18.28m 第二个图形:(三角形加正方形) 隧道截面总面积=有效通车面积+三角形的面积=16m2 +4m2 =20m2 这个图形的隧道的实用面积率=16m2/20m2=80% 这个图形的隧道截面的周长≈3×4m+2×2.83m=12m+5.66m=17.66m 第三个图形:(梯形加正方形) 隧道截面总面积=有效通车面积+梯形的面积=16m2 +6m2=22m2 这个图形的隧道的实用面积率=16m2/22m2≈72.7% 这个图形的隧道截面的周长≈3×4m+2×2.24m+2m=12m+6.48m=18.48m 第四个图形:(正方形加矩形) 隧道截面总面积=矩形1的面积=4m×6m=24m2 这个图形的隧道的实用面积率=16m2/24m2≈66.7% 这个图形的隧道截面的周长=(4m+6m)×2=20m 第五个图形:(正方形) 隧道截面总面积=矩形2的面积=4m×4m=16m2 这个图形的隧道的实用面积率=16m2/16m2=100% 这个图形的隧道截面的周长=4m×4m=16m 不同形状的隧道截面总面积、截面的周长、隧道的实用面积率的比较 图形编号 图形1 图形2 图形3 图形4 图形5 截面总面积 22.28m2 20m2 22m2 24m2 16m2 实用面积率 71.8% 80% 72.7% 66.7% 100% 截面的周长 18.28m 17.66m 18.48m 20m 16m 三、计算结果的分析与研究 从计算结果得出:1、不同形状的隧道截面的实用面积率与截面的周长具一定的相关性,即实用面积率越高的,周长越小(最节省材料)。2、隧道截面形状为图形5和图形2的隧道实用面积率高、制造用的材料最省。 为什么常见的隧道截面不采用图形5和图形2的形状呢?而是采用隧道截面如图形1的形状呢?于是我试着上网查找原因。 在/2007-06/28/content_10419683.htm网页资料:26日晚,位于渝中区解放东路文化街路口主路地下的一条在建电缆隧道,在施工中突然塌方,所幸无人伤亡。事发隧道隶属渝中区顺城街变电站110千伏送出隧道工程,由重庆广信电力建设公司承建。知情者介绍,该隧道结构近似正方形,高宽约为2.7米,顶部距路面约1米。 本资料表明:正方形形状的隧道出的事故原因比较多,可能是不采用图形5的原因。 在http://wiki.railcn.net/index.php?title=%E9%9A%A7%E9%81%93&variant=zh-cn网页资料了解到有关隧道结构的一些知识。隧道洞身——隧道结构的主体部分,是汔车通行的信道。 衬砌——承受地层压力,维持岩体稳定,阻止坑道周围地层变形的永久性支撑物。它由拱圈、边墙、托梁和仰拱组成。拱圈位于坑道顶部,呈半圆形,为承受地层压力的主要部分。边墙位于坑道两侧,承受来自拱圈和坑道侧面的土体压力,边墙可分为垂直形和曲线形两种。托梁位于拱墙和边墙之间,为防止拱圈底部挖空时发生松动开裂,用来支承拱圈。仰拱位于坑底,形状与一般拱圈相似,但弯曲方向与拱圈相反,用来抵抗土体滑动和防止底部土体隆起。 本资料表明:隧道截面通常采用图形1主要是考虑承受地层压力,使隧道结构更牢固度,才能安全性。 为什么不采用图形2的原因,我一直找不到相关的有效资料。我想可能与结构的牢固度或者视觉效果有关,也可能隧道工程的难度有关或其它原因,有待进一步研究。如果在这些方面图形1、2 没有太多的区别,我建议采用图形2,因为这种形状的隧道实用面积率高、制造用的材料最省。本  篇:《龙8国际_龙8娱乐_龙8国际娱乐平台》来源于:龙8国际_龙8娱乐_龙8国际娱乐平台 优秀范文,论文网站
    本篇网址:http://www.xielw.cn/2016/shuxuelunwen_1028/149047.html
    Copyright © 龙8国际_龙8娱乐_龙8国际娱乐平台 All Rights Reserved.
    龙8国际